
Wall‘n‘Ball Edit

Wall‘n‘Ball Edit is a playfield („arena“) editor for the LEDmePlay breakout-style game

Wall‘n‘Ball. It was developed using Processing which is an easy-to-learn computer

language for designers and artists. It is based on the popular Java programming

language. You can download it from https://processing.org/download/.

A ready-made package of Wall‘n‘Ball Edit can be executed by clicking its icon on the

Windows, Mac OS X or Linux desktop. Alternatively, the source code of the program can

be loaded and executed from within the Processing environment. Please read the

section on installing Wall‘n‘Ball Edit for details.

https://processing.org/download/

Scope

Wall‘nBall Edit was written in order to be able to conveniently create playfields,

„arenas“, for the LEDmePlay game Wall‘n‘Ball on a personal computer that runs a

Processing compatible operating system, i.e., one of the more recent incarnations of

Windows, Mac OS X and Linux. With Wall‘n‘Ball Edit, you can load and modify arenas

from Wall‘n‘Ball or create your own from scratch. Once finished, you can save them to

your PC's harddisk . You may then open one of these files in a text editor and copy and

paste its content right into the program Wall‘n‘Ball edit. It is described later on how this

can be accomplished.

As Processing does not provide for user interface elements such as pull-down menus,

sliders, buttons and so on, one needs to invent one's own interface elements, as can be

seen in the screenshot above. The program is mouse-controlled.

Installation

You should have downloaded a ZIP file with a name similar to „WallNBallEdit.zip“ from

this website, www.mithotronic.de. Copy it to a location you want it to be, then unzip it.

Within the newly deflated directory are the two folders WallNBallEdit.windows32,

WallNBallEdit.windows64, the font file 'ArialMT-30.vlw', the two example files 'apple'

and 'helicopter' and WallNBallEdit's source code for Processing, 'WallNBallEdit.pde'. The

suffix '.pde' might be invisible, dependent on your operating system's current parameter

settings.

There are three ways how to execute Wall‘n‘Ball Edit. All might work for you. Either

download and install the Processing Environment and start the source code from there,

or run the executable file for Windows. The third way is to export the source code from

within the Processing IDE. More about this will follow later on. In any case the font file

'ArialMT-30.vlw' needs to be present in the directory with the Wall‘n‘Ball Edit source

code or the Wall‘n‘ Ball Edit executable, otherwise the application will not work. Please

try one of the following alternatives:

1. Run the Wall‘n‘ Ball Edit source code

Download the Processing IDE ("Integrated Development Environment") for your

operating system. Get it from https://processing.org/ and install it on your harddisk as

described on their website.

file:///C:/Users/Thomas/Desktop/BASTELN/LEDmePlay/LEDmePlayDraw/www.mithotronic.de
https://processing.org/

Locate the file 'WallNBallEdit.pde' in the newly created directory obtained by deflating

the downloaded ZIP file. Please note that the date could be different, and the suffix may

be invisible. Check that the font file 'ArialMT-30.vlw' is present in the same directory.

Also note that the directory bears the same name as the source code file. This is

mandatory for the Processing Environment. If you double click the source code file,

Processing 3 will be loaded and run and then show you the 'LEDmePlay Draw' source

code in its window. From there you may click on the Play button on top left which will

compile and run the 'LEDmePlay Draw' application. Alternatively, you can start the

Processing IDE yourself and load the source code from there.

2. If your operating system is Windows 7/8/10, run the 'WallNBallEdit' executable in one

of the subfolders 'WallNBallEdit_windows32' or 'WallNBallEdit.windows64' in the newly

created directory that you obtained by deflating the ZIP file you downloaded from this

website, www.mithotronic.de. The files 'ArialMT-30.vlw' should also be in this folder.

Double click on the executable file 'WallNBallEdit.pde'. This should start the application.

Please note that the date could be different, and the suffix may be invisible. If the file in

the directory with suffix 'windows32' does not work for you, try the 'windows64'

version. If neither works for you, please see alternative 3 which follows. If your operating

system is Mac OS X or a Linux OS, please see alternative 3.

3. Export the Processing project from within the Processing IDE.

Download the Processing IDE ("Integrated Development Environment") for your

operating system. Get it from https://processing.org/ and install it on your harddisk as

described on their website.

Start the Processing IDE via double clicking on its icon. Locate the 'WallNBallEdit' source

code as described above and load it from within Processing. You should now see the

source code. Select 'Export' from the File menu. Select your platform - either Windows,

Mac OS X or Linux. If you like the application to run in fullscreen mode, select

'Presentation Mode'. However, I do not recommend this as you may want to use other

applications besides 'WallNBallEdit'.

You may want to embed Java 8 right into the exported application. If you want to do this,

you need to install Java 8 beforehand from http://www.java.com/download. See the

documentation there. I suggest to make a first try without embedding Java 8 into the

application. If it does not work then, you can repeat the procedure and embed Java 8.

file:///C:/Users/Thomas/Desktop/BASTELN/LEDmePlay/LEDmePlayDraw/www.mithotronic.de
https://processing.org/
http://www.java.com/download

Anyway, if you have made the necessary choices and then clicked the 'Export' button,

Processing will export the 'WallNBallEdit' source code (called a 'sketch' in Processing

lingo) into an executable for your platform. Processing creates a new directory in the

folder with the 'WallNBallEdit' sketch, 'WallNBallEdit.windows32' and

'WallNBallEdit.windows64' if you are on Windows. You can start the executable as usual

by double-clicking on its icon. For further explanations, see alternative 2. For Linux and

Mac OS X, the executables may look similar. However, I did not try it.

Elements in the Application Window

At the left side within its window, Wall‘n‘Ball Edit shows an abstract view of the

LEDmePlay's LED matrix panel with stylized 1024 LEDs. This is the area in which all

drawing operations take place. When you move the mouse over it, the drawing position

under the mouse is highlighted. As all game elements in Wall‘n‘Ball are 2x3 „pixels“

wide, you cannot use elements smaller than that in your arena design, for instance

single dots. With the drawing tools supplied, you may draw bricks in different colors for

the player to hit and demolish and indestructible walls in different shapes. You may also

clear the panel and start anew.

Situated at the right side are two columns of arena elements, bricks in six colors and

walls in eight shapes. There is also an empty brick that represents empty space in the

playfield. If you click on any of these elements, the shape of the mouse cursor changes

into this shape. Left clicking the mouse within the LED matrix places the selected

element around the mouse position.

On the right edge of the screen are eight lock knobs. The four upper knobs let you add or

remove one of the bats, the four lower knobs let you add or remove one of the border

pieces.

On the lower right part of the screen are three buttons, „Clear Arena“, „Export“ and

„Load“. The „Clear Arena“ purges all arena elements from the LED matrix, „Export“

allows you to select a name for the current arena and then save it to disk, and „Load“

enables you to retrieve an arena definition from a file on the hard disk.

You may terminate the application by either pressing the Escape key or by clicking the

cross in the upper right corner of the application window. Please note that this does not

save the arena data. If you have not saved it beforehand, it is being deleted.

Using Wall‘n‘Ball Edit

You start a editing session either by loading a file with an arena definition, or by drawing

straight-on on a blank LED matrix. The latter is the default state once the program has

been started. If you load an arena definition, it is displayed on-screen immediately,

and, when over the LED matrix illustration, the mouse cursor changes into a red brick as

default.

Place the mouse somewhere over the LED matrix and click the left mouse button: the

currently selected brick is placed within the arena. If you want to change the brick later

on, replace it by another brick, for instance the empty brick. Place bricks on the LED

matrix until you are done. You may then want to decide how many open border parts

and bats you place in the arena. If you place an open border part it usually makes sense

to also place a bat there. Use the toggle buttons marked „Upper Bat“ and so on to place

the bats and the toggle buttons „Upper Border“ etc. to add or remove the respective

borders. The program does not allow to place no bats at all into the arena. Should you

deselect the only bat left, it activates the lower bat.

If you are done designing your arena, press the „Export“ button and save your creation

to disk. You might also want to load an arena from disk with the „Load“ button. When

you need to start from scratch, clear the LED matrix with the „Clear“ button.

Embedding a playfield („arena“) in Wall‘n‘Ball

In the following you will learn how to embed your playfields into the Wall‘n‘Ball main

Arduino sketch. Wall‘n‘Ball does not allow to load a file with playfield („arena“)

definitions, as there is no drive etc. attached to the Arduino Mega 2560 in the

LEDmePlay. For the time being you need to manually place your playfield definitions in

the Wall‘n‘Ball source code (or „sketch“ in Arduino lingo). You should make a copy of the

original Wall‘n‘Ball source code before you modify it.

Please note that you may not delete any of the playfield definitions in the source code.

Instead you should replace them with your own playfield definitions. This is because the

count of playfield definitions needs to remain constant. With a more profound

knowledge of the program you can circumvent this limitation.

The playfield definition from the file „apple“ that comes with WallNBall Edit looks like

this:

0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 11, 0, 0, 0, 0, 0, 9, 12, 0,
0, 10, 0, 0, 0, 0, 3, 0, 10, 0,
0, 10, 0, 0, 0, 3, 0, 0, 10, 0,
0, 10, 0, 0, 8, 2, 2, 0, 0, 0,
0, 10, 0, 8, 2, 2, 2, 2, 0, 0,
0, 10, 0, 2, 2, 2, 2, 2, 0, 0,
0, 10, 0, 2, 2, 2, 2, 2, 0, 0,
0, 10, 0, 2, 2, 2, 2, 2, 0, 0,
0, 10, 0, 0, 2, 2, 2, 0, 0, 0,
0, 10, 0, 0, 0, 0, 0, 0, 10, 0,
0, 14, 0, 0, 0, 0, 0, 15, 13, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 0, 0, // Upper, lower, left, right bat is 1-active/0 - inactive
0, 0, 0, 0, // Upper, lower, left, right border is 0-closed/1-open

The first 15 lines define the 15 rows of bricks in the playfield. A line in the arena contains
ten bricks side-by-side. Each individual number represents a certain type of brick.

The second to last line determines which bats are being used in the playfield. A zero
means the respective bat is not present, a one means the bat is there. The first number
stands for the upper bat, the second for the lower bat, the third for the left and the
fourth for the right bat.

The last line defines which of the wall elements in the border are open and closed. A
zero codes for a closed wall and a one for an open wall. Please notice that by „wall“ we
refer to an entire side of the playing area, not merely one brick.

Next comes the Arduino code from the sketch WallNBall.ino (or a similar name with or

without the suffix .ino) from ca. line 574:

// Playfield encoding

#define EMPTY 0

#define UNUSED_BRICK 1 // currently unused

#define RED_BRICK 2

#define GREEN_BRICK 3

#define BLUE_BRICK 4

#define VIOLET_BRICK 5

#define YELLOW_BRICK 6

#define SOLID_BRICK 7

#define ORANGE_BRICK 8

#define HORIZ_WALL_HIGH 9

#define VERT_WALL 10

#define CORNER_NW 11

#define CORNER_NE 12

#define CORNER_SW 13

#define CORNER_SE 14

#define HORIZ_WALL_LOW 15

Compare these definitions with the playfield definitions either from the file „apple“ or

with those from within the Wall‘n‘Ball sketch. You will find them at approximately line

619. Have a look at the first fifteen lines in the file „apple“ (or the corresponding

section in the sketch). The first two rows of bricks are empty. The ball(s) can rebound

there from the upper wall. In the third row the first brick is empty, too, and the second

brick is „CORNER_NW“, a wall corner element with its bend in northeast direction.

Notice how the entire playfield is surrounded by 0‘s. The last row in the playfield is

empty because the lower bat needs to hover around there. There is no other bat. All

border parts are closed.

When you are going to replace one of the playfield definitions in the Wall‘n‘Ball Arduino

sketch with your own, you can mark the particular code section using the mouse, delete

it with the Del key, then copy the new playfield definition from the file you saved in

Wall‘n‘Ball Edit to the clipboard and finally paste it right in-place in the empty section in

the Wall‘n‘Ball sketch.

Room for Improvement

There are plenty of possibilities for improving the program. For a better user interface,

one could try Peter Lager's G4P GUI controls library from

http://www.lagers.org.uk/g4p/index.html

You cannot currently enlarge or shrink the application's window. This is bad practice. If

you want this, however, the GUI control elements need to change their size accordingly

which might be hard to achieve.

http://www.lagers.org.uk/g4p/index.html

The logic of the buttons for the bats is reversed with respect to that of the buttons for

the wall borders. The program crashes occasionally while the user is load a new playfield

definition from a file. Both will be fixed in an upcoming version of the program.

License

GNU Lesser General Public License, see https://opensource.org/licenses/LGPL-3.0

https://opensource.org/licenses/LGPL-3.0

